

1-4 化學計量

()打用10字/人心力打开。			
利用化學反應式的計算			
原理	A、完整的化學反應方程式,直接記錄著反應物與生成物間【分子數】關係,間接透露出反應物與生成物的【莫耳數】關係,亦即反應物與生成物間的【質量】關係。 B、鎂+氧→氧化鎂 (Mg=24)2Mg+O2→2MgO 可知:2個 Mg 原子和 1個 O2分子反應,可產生 2個 MgO 分子。 2 莫耳 Mg 原子和 1 莫耳 O2分子反應,可產生 2 莫耳 MgO 分子。 2 莫耳鎂的質量=24×2=48 克 1 莫耳 O2質量=32 克 1 莫耳的 MgO=24+16=40 克,2 莫耳的 MgO=40×2=80 克 48 克的 Mg 原子和 32 克的 O2分子完全反應,可產生 80 克的 MgO。		
技巧	A、列出化學方程式。 B、求出各項物質的【係數】比 → 【係數】比=【莫耳數】比。 C、求已知物質的莫耳數:		
必背方程式	A、氫燃燒: 2H ₂ +O ₂ →2H ₂ O B、水電解: 2H ₂ O→2H ₂ ↑(負極,有可燃性) + O ₂ ↑(正極,有助燃性) C、鎂燃燒: 2Mg+O ₂ →2MgO; 氧化鎂+水:MgO+H ₂ O→Mg(OH) ₂ D、鈉燃燒: 4Na+O ₂ →2Na ₂ O; 氧化鈉+水:Na ₂ O+H ₂ O→2NaOH E、碳燃燒: C+O ₂ →CO ₂ ↑; 二氧化碳+水:CO ₂ +H ₂ O→H ₂ CO ₃ F、硫燃燒: S ₈ +8O ₂ →8SO ₂ ↑; 二氧化硫+水:SO ₂ +H ₂ O→H ₂ SO ₃ G、鋼絲絨燃燒: 4Fe+3O ₂ →2Fe ₂ O ₃ ; 氧化鐵不溶於水。 H、氧化汞加熱: 2HgO→2Hg+O ₂ ↑ I、雙氧水分解: 2H ₂ O ₂ →2H ₂ O+O ₂ ↑ J、鎂+鹽酸: Mg+2HCI→MgCl ₂ +H ₂ ↑ K、鈉+水:2Na+2H ₂ O→2NaOH+H ₂ ↑ L、大理石+稀鹽酸:CaCO ₃ +2HCI→CaCl ₂ +H ₂ O+CO ₂ ↑ M、鹽酸+氫氧化鈉:HCI+NaOH→NaCI+H ₂ O N、硫酸+氫氧化鈉:H ₂ SO ₄ +2NaOH→Na ₂ SO ₄ +2H ₂ O O、碳酸鈉+氯化鈣: Na ₂ CO ₃ +CaCl ₂ →2NaCl+CaCO ₃ ↓ P、碳酸氫鈉加熱: 2NaHCO ₃ →Na ₂ CO ₃ +H ₂ O+CO ₂ ↑ Q、呼吸作用:C ₆ H ₁₂ O ₆ +6O ₂ →6H ₂ O+6CO ₂ ↑ R、石灰水+二氧化碳:Ca(OH) ₂ +CO ₂ →H ₂ O+CaCO ₃ ↓ S、哈柏法製造氨氧: N ₂ +3H ₂ — Pello — Place —		

選出下列下確的敘述?

(A)10 公克氫氣在 10 公克氧中燃燒可得 20 公克的水 (B)10 公克蠟燭燃燒可得水和二氧化碳 的重量為 10 公克 (C)10 公克的銅在空氣中燃燒得 10 公克的氧化銅 (D)10 公克氧化汞加 熱後完全分解為汞和氧,其重量和等於 10 公克。

【答】: D

加強磨練

氫分子與氦分子反應產生氨分子,其反應式為: N₂+3H₂→2NH₃,若將 56 公克的氦分子與 6 公克的氫分子混合反應,試問最多可以產生多少克的氨分子?(N=14;H=1)

(A)68 (B)51 (C)34 (D)17 •

【答】: C

加強磨練

將鐵礦製成鐵,可依下列之化學反應方程式反應而得: 2Fe₂O₃+3C→4Fe+3CO₂,則 56 公 斤的氧化鐵與足量的碳反應,可產生多少公斤的鐵?(原子量:Fe=56,O=16,C=12) (A)20 (B)30 (C)40 (D)50 •

【答】: C

加強磨練

甲烷(CH₄)與丙烷(C₃H₈)在充足的氧氣下完全燃燒反應,反應方程式如下(其反應式皆未平 衡)。若各取 1.0 莫耳的甲烷與丙烷使其完全燃燒,則下列敘述何者正確?

 $CH_4 + O_2 \rightarrow CO_2 + H_2O$

 $C_3H_8+O_2\rightarrow CO_2+H_2O$

(A)燃燒所產生二氧化碳的質量比為 1:3 (B)燃燒所產生水蒸氣的莫耳數比為 1:3

(C)燃燒所需氧氣的莫耳數比為 1:3 (D)甲烷、丙烷的質量比為 1:3。

【答】: A

加強磨練

反應式 $2Fe_2O_3+3C\rightarrow 4Fe+3CO_2$ 中,約需若干克的氧化鐵,才能生成 33 克的二氧化碳? (A)72 (B)80 (C)88 (D)96。 (Fe=56)

【答】: B

加強磨練

火力發電會產生大量的溫室氣體,嚴重破壞生態環境。若以太陽能將水電解,產生氫氣與氧氣,再供應給氫氧燃料電池使用,則可獲得有用的能量與純淨的水,如此可避免生態破壞。 請問:72公斤的水完全電解後,可產生幾公斤的氫氣?

(A)4 (B)6 (C)8 (D)9 公斤。

【答】: C

加強磨練

汽車常裝有安全氣囊,當強烈碰撞時,瞬間引起下列反應,所產生的氣體快速充滿氣囊,可以達到保護車內人員安全的目的。反應式: $NaN_3 \rightarrow Na + N_2$ (注意此反應式尚未平衡),試回答下列問題:

- (1) 將 NaN₃→Na+N₂平衡之後,此反應方程式係數的最簡單整數和為多少? (A)5 (B)6 (C)7 (D)8。
- (2) 若安全氣囊中置入 65 克 NaN₃,經完全反應之後,可產生多少莫耳氮氣? (A)1 (B)1.5 (C)2 (D)2.5。(原子量: N=14, Na=23)
- (3) 承上題,產生鈉多少克?

(A)11.5 (B)23 (C)34.5 (D)46 °

【答】: (1)C (2)B (3)B

加強磨練

燃燒多少公克碳粉所產生的二氧化碳,才能和加熱分解 2 公斤碳酸鈣生成的二氧化碳等重? (A)240 (B)360 (C)480 (D)600 公克。(Ca=40)

【答】: A

加強磨練

取 N_2 28 克和氫 10 克充分反應後,共得到 NH_3 重 23.8 克,則此反應之產率為多少? (A)35% (B)62% (C)70% (D)93%。

【答】: C

加強磨練

將一片 200 克的鋅片放入硫酸銅溶液中,其反應式為 $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$,經過一段時間後,取出鋅片烘乾,發現紅色的銅附著於鋅片上,此時鋅片重量變為 198.5 克,試問有多少克的銅析出?(Zn=65,Cu=64)

(A)64 (B)96 (C)128 (D)160 °

【答】: B

加強磨練

有一學生在實驗室中,將 15 克冰醋酸、12 克的丙醇,以及少量的濃硫酸加在燒瓶中加熱, 以製備乙酸丙酯。實驗完成後,此學生共收得純酯 5.0 克,他的實驗產量百分率為多少?

(方程式: CH₃COOH+C₃H₇OH → CH₃COOC₃H₇+H₂O)

(A)20% (B)25% (C)33% (D)42% ·

【答】: B

加強磨練

取 9.0 克的純鋁溶於鹽酸中,將生成的氫氣通過灼熱的氧化銅中,收集所得的純銅,放入硝酸銀溶液,經過的反應如下:(原子量: Al=27, Ag=108, Cu=64)

- ① Al+HCl → H, + AlCl, (未平衡)
- ②H,+CuO→Cu+H,O(未平衡)
- ③ Cu + AgNO₃ → Ag + Cu(NO₃), (未平衡)

則理論上最多可得銀多少克?

(A)27 (B)54 (C)81 (D)108 公克。

【答】: D

加強磨練

13

有關 24.5 克的氯酸鉀固體強熱後的結果 $KClO_3 \rightarrow KCl + O_2$ (未平衡),下列何者正確? (K=39,Cl=35.5)

(A)生成 0.2 莫耳氧氣 (B)生成 3.2 克氧氣 (C)0.3 莫耳氯化鉀 (D)14.9 克氯化鉀。

【答】: D

加強磨練

將 60 g 的葡萄糖(C₆H₁₂O₆)完全燃燒後,可得到多少克的水?

(A)18 (B)27 (C)36 (D)54 公克。

【答】: C

加強磨練

水電解的反應式: $2H_2O \rightarrow 2H_2 + O_2$,如要收集 6 莫耳的氣體,則有多少克的水被電解? (A)72 (B)54 (C)36 (D)27 公克。

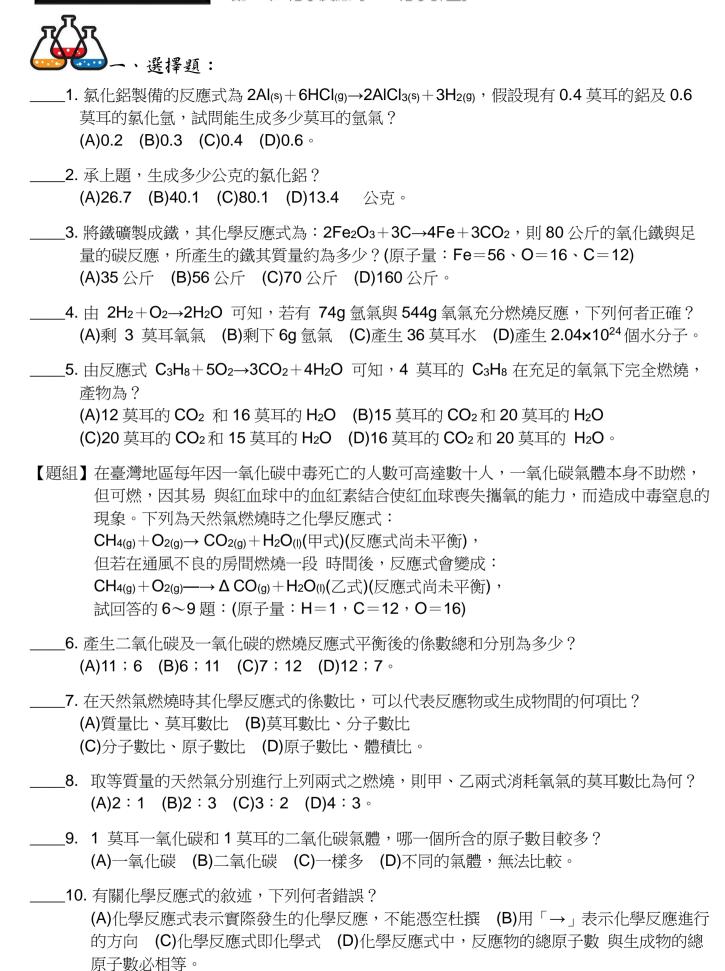
【答】: A

加強磨練

燃燒某碳氫化合物需要 6 莫耳氧氣,燃燒後產生 4 莫耳二氧化碳,則燃燒該碳氫化合物可產 生水幾公克?

(A)18 (B)36 (C)72 (D)144 公克。

【答】: C


加強磨練

火箭中的燃料肼 (N_2H_4) 與氧化劑四氧化二氮 (N_2O_4) 進行作用後生成氮氣與水。其反應式為 $N_2H_4+N_2O_4\rightarrow N_2+H_2O$ (係數未平衡);今有 160 公克的肼與 184 公克的 N_2O_4 完全作用後,生成氦氣多少克?

(A)168 (B)182 (C)196 (D)210 (E)344 °

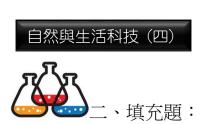
【答】: A

自然與生活科技(四)

第一章 化學反應 [1-4 化學計量]

11.	. 假設 <u>文文</u> 家一個月使用天然氣 64 公斤(在不產生一氧化碳的條件下),則會產生多少公局	宁
	的二氧化碳? (A)88 (B)132 (C)176 (D)192 公斤。	
12.	. 4 莫耳的氫,可以和多少莫耳的氧氣完全反應? (A)0.5 莫耳 (B)1 莫耳 (C)2 莫耳 (D)4 莫耳。	
13.	. 已知氫氣燃燒的化學反應式為: H ₂ +O ₂ → H ₂ O(未平衡),則 5 公克的氫氣和 48 公克的氧氣完全 反應可產生多少公克的水? (A)36 (B)45 (C)48 (D)52。	Ź
14.	. 於一真空的密閉容器中放入 A、B、C、D 物質 A B C D	
	四種物質,在適當的條件下使其充分反應, 反應前的質量(克) 10 8 2 0 经過一段時間後,測得相關資料如右表所 反應後的質量(克) ? 7 2 6	_
	經過一段時间後,測停相關資料如石表所 示。關於此反應的敘述,下列何者正確?	
	(A)A、B物質可能為此化學反應的反應物 (B)C、D物質可能為此化學反應的生成物 (C)反應後,A 的質量為3公克 (D)B和D的質量變化量為6:1。	
15.	. 工業煉鐵是利用氧化還原的原理,在高爐中煉鐵如右圖,其中 涉及的主要反應為:(原子量: $C=12 \cdot O=16 \cdot Fe=56$) 甲反應式: $2Fe_2O_3+3C \to 4Fe+3CO_2$ 乙反應式: $Fe_2O_3+3CO \to 2Fe+3CO_2$ 丙反應式: $C+O_2 \to CO_2$ 利用此原理在實驗室中使用粉末狀純氧化鐵 32 公克與足量的碳粉加熱,若純氧化鐵完全反應,則將產生金屬鐵約多少公克? (A)11 公克 (B)22 公克 (C)44 公克 (D)55 公克。	
16.	. 承上題,若將 20 公斤的氧化鐵與足量的碳反應,所產生的鐵其質量為多少公斤? (A)8 (B)14 (C)20 (D)24 公斤。	
17.	. 在定溫、定壓時,氣體 A_2 和氣體 B_2 反應,生成氣體 BA_3 ,其反應方程式為: $3A_2+B_2\to 2BA_3$ 。三種氣體 A_2 、 B_2 、 BA_3 之係數比代表參與反應的: (甲) 莫耳數比 (乙) 原子數比 (丙) 分子數比 (丁) 體積比,以上正確的有幾項? (A) 1 項 (B) 2 項 (C) 3 項 (D) 4 項。	
18.	. 有一化學反應式如下:2KI+Pb(NO ₃) ₂ →2 KNO ₃ +PbI ₂ ,若 KI、Pb(NO ₃) ₂ 、KNO ₃ 的分子量分別為 166、331、101,請問 PbI ₂ 的分子量應為下列何者? (A)432 (B)461 (C)397 (D)不知反應物質量,無法得知。	子
19.	. 氮氣和氫氣反應生成氨是工業上一個重要的化學反應,反應式為: N_2+3 $H_2\rightarrow 2$ NH_3 ; 請問參與反應的 N_2 、 H_2 及 NH_3 的質量比為多少? (A)1:3:2 (B)14:3:17 (C)14:1:15 (D)28:2:17。	
20.	 . 已知 A 氣體和 B 氣體反應成 C 氣體的反應式如下: A+3B→2C; 今取 12 克的 A 和足的 B 完全反應後可得到 27 克的 C 且 A 完全用完。若改取 24 克的 A 和 10 克的 B 完全反應後可以得到 C 多少克? (A)18 (B)36 (C)34 (D)39。 	

自然與生活科技(四) 第一章 化學反應 [1-4 化學計量]


21.	已知甲烷是天然氣的最主要成分,為一種很重要的燃料其化學式為 CH_4 ,且 1 莫耳的甲烷和氧完全燃燒後可得 2 莫耳的水 (H_2O) 。請問 64 公克的甲烷和氧完全燃燒後可生成幾克的水? (A)144 (B)72 (C)54 (D)36 公克。
22.	有關 2H _{2(g)} +O _{2(g)} →2H ₂ O _(g) 方程式之敘述何者錯誤? (A)同溫、同壓下,2升氫與1升氧作用生成2升水蒸氣 (B)4克氫與32克氧作用生成36克水蒸氣 (C)若密閉容器中有5莫耳氫氣、2莫耳氧氣點火燃燒,反應結束時莫耳數比為氫:氧:水蒸氣=2:1:2 (D)氫與氧作用為水蒸氣的分子數比2:1:2。
23.	已知某化學反應方程式: $2A_2+B_2\rightarrow 2A_2B$ 。今 A 元素與 B 元素對碳 C 的質量比分別為 3:2 與 2:3。則下列結果何者正確? (A)36g 的 A_2 可與 16g 的 B_2 完全反應得 88g 的 A_2 B (B)56g 的 A_2 可與 32g 的 B_2 完全 反應得 88g 的 A_2 B (C)原子量 $A=8$, $B=18$ (D)分子量 A_2 B=44。
24.	實驗室製造氯氣和氧氣的方法,依序以甲反應與乙反應表示: 甲反應: $4HCI+MnO_2 \rightarrow CI_2+MnCI_2+2H_2O$ 、 乙反應: $2H_2O_2 \xrightarrow{MnO_2} 2H_2O+O_2$ 在甲、乙兩個反應中 MnO_2 的作用,下列敘述何者正確? (A)在甲、乙兩反應中皆是催化劑 (B)在甲、乙兩反應中皆是反應物 (C)在甲反應中是反應物,在乙反應中是催化劑 (D)在甲反應中是催化劑,在乙反應中是反應物。
25.	氣體 A 與氣體 B 反應生成氣體 C 的反應式為 A+2B→2C, 若取 18 克 A 與足量 B 完全 反應,可生成 42 克的 C,則 A、B、C 分子量比為 (A)6:4:7 (B)3:4:7 (C)1:2:2 (D)1:1:1。
26.	乙醇(C_2H_5OH)在充足的氧氯下,燃燒產生水與二氧化碳,其反應式為: $C_2H_5OH+O_2\to CO_2+H_2O$ (注意:此反應式尚未平衡)。 已知原子量 $H=1$ 、 $C=12$ 、 $O=16$,今點燃盛有 79 公克乙醇的酒精燈,在充足的氧氣燃燒一段時間後,還餘有 46 公克乙醇,此段時間燃燒所排放的二氧化碳應為多少公克? (A)44 (B)63 (C)88 (D)92。
27.	在真空的密閉容器中放入甲、乙、丙、丁四種物質,於適當的條件下使其充分反應,經過一段時間後,測得相關資料如右表。關於此反應的敘述,下列何者 <u>錯誤</u> ? (A)反應後,甲的質量為 1 公克 (B)甲、丙是反應物 (C)乙、丁是生成物 (D)丁可能是此化學反應的催化劑。
28.	汽車常裝有安全氣囊,當強烈碰撞時,將引燃雷管,促使疊氮化鈉(NaN3)固體顆粒產生爆炸,瞬間引發下列反應: $NaN_3 \rightarrow Na + N_2$ (注意:此反應式尚未平衡),而所產生的 N_2 氣可快速充滿氣囊,達到保護車內人員安全的目的。此反應方程式經平衡後,係數為最簡單整數時,係數的總和為多少? (A)6 (B)7 (C)8 (D)9。
29.	承上題,若完全反應後要產生 1.5 莫耳氮氣,則氣囊中應置入約多少公克 NaN ₃ ? (原子量: N=14、Na=23) (A)32.5 (B)65 (C)97.5 (D)130。

30. 甲、乙、丙、丁分別代表四種不同的純物質,取10克甲和8克乙維行反應,其反應式 為:2甲+乙→丙+2丁。反應後乙完全用完,甲剩下2克,生成6克的丙,則此化學 反應生成丁多少克? (A)10 克 (B)11 克 (C)12 克 (D)6 克。 _31. 甲烷(CH4)與丙烷(C3H8)在充足的氧氣下完全燃燒反應,反應式如下,反應式皆未平衡: $CH_4+O_2 \rightarrow CO_2 + H_2O$; $C_3H_8+O_2 \rightarrow CO_2+H_2O$ 若各取 1.0 莫耳的甲烷與丙烷使其完全燃燒,則下列敘述,何者錯誤? (A)兩氣體的質量比為 1:1 (B)燃燒所產生水蒸氣的莫耳數比為 1:2 (C)燃燒所需氧氣的莫耳數比為 2:5 (D)燃燒所產生二氧化碳的莫耳數比為 1:3。 _32. 已知碳酸鈣(CaCO₃)受熱分解,可以生成二氧化碳(CO₂)與氧化鈣(CaO),若將 500 克的 碳酸鈣完全分解,可產生多少克的二氧化碳?(原子量: Ca=40, O=16, C=12) (A)220 (B)120 (C)280 (D)180 公克。 _33. 氫氣燃燒產生水蒸氣,其反應式為 2H₂+O₂ ──→ 2H₂O;若為完全反應且反應後溫 度、壓力保持不變,則氫氣、氧氣、水蒸氣的之間的關係,下列何者錯誤? (A)係數比=分子數比= 2:1:2 (B)係數比=莫耳數比= 2:1:2 (C)係數比=質量比= 2:1:2 (D)係數比=體積比= 2:1:2。 34. 將反應式 $C_3H_8+O_2 \rightarrow CO_2+H_2O$ 平衡後,發現若有 2 莫耳的 C_3H_8 與 O_2 作用,則需供 應多少莫耳的氧? (A)1 (B)5 (C)6 (D)10 ° _35. 取 4.0 克金屬氧化物 MO,與適量的稀硫酸(H2SO4=98)完全反應,反應後將溶液蒸乾, 得 12.0g 的金屬硫酸鹽(MSO₄),請問:4.0 克的金屬氧化物 MO 中含多少克的金屬 M? (A)1.6 (B)2.4 (C)3.0 (D)3.2 ° 試管號碼 鎂(g) 硫酸(mL) 硫酸鎂(g) 0.5 20 2.5 _36. 阿達操作鎂與稀硫酸反應的實驗數據如右表,試問第5 2 1.0 20 5.0 號試管中有多少個鎂原子參與反應?(原子量:Mg= 1.5 20 7.5 2.0 20 10.0 24)(化學反應式:鎂+稀硫酸→硫酸鎂+氫) 10.0 2.5 20 (A)6×10²³ (B)2.5×10²³ (C)6.25×10²² (D) 5×10²² \circ 3.0 20 10.0 _37. 7.2 公克的鎂完全燃燒後,可產生氧化鎂(MgO)多少公克?(Mg=24,O=16) (A)40 (B)32 (C)12 (D)16 • _38. 某金屬 M 在空氣中燃燒,其化學反應式為:2 M+O2→2 MO,若 1 mole 金屬 M 與 1 mole 氧化物 MO 的質量比為 4:5,則金屬 M 的原子量可能為何?(原子量:O=16) (A)8 (B)16 (C)32 (D)64 ° _39. 有一物質為碳氫化合物(CxHy...),含有 5 公克的氫元素及 24 公克的碳元素,則在空氣 中完全燃燒,將消耗多少公克的氧氣?產生多少公克的二氧化碳? (A)104g 氧氣、88g 的二氧化碳 (B)72g 氧氣、44g 的二氧化碳 (C)64g 氧氣、44g 的二氧化碳 (D)64g 氧氣、88g 的二氧化碳。 _40. 已知 1 莫耳碳氫化合物 $C_{\scriptscriptstyle c}H_{\scriptscriptstyle c}$ 完全燃燒,可產生 88 克二氧化碳與 54 克的水,若燃燒反 應方程式為: $C_xH_y+O_2\to CO_2+H_2O$ (未平衡),則該碳氫化合物的化學式為下列何者?

(A)CH₄ (B)C₂H₄ (C)C₂H₆ (D)C₃H₈ \circ

- 耳金屬氧化物 M₂O 的質量比為 2:5,則金屬 M 的原子量可能為何?
 - (A)8 (B)16 (C)32 (D)48 •
- _50. 元素 X 和 Y 可形成 X₂Y 和 XY 兩種分子,其分子量分別為 44 和 30,若亦可形成 XY₂分 子,則其分子量為何?
 - (A)44 (B)46 (C)60 (D)92 •
- _51. 某學生拿碳酸鈣與鹽酸在密閉容器內發生反應,若反應後容器內恰好生成 5 莫耳的二氧 化碳,下列敘述何者正確?
 - (A)反應前碳酸鈣至少有5莫耳以上 (B)反應前鹽酸至少有5莫耳以上
 - (C)該容器內剛好有 5 莫耳的碳原子 (D)容器內生成的氯化鈣有 5 莫耳以上。

(A)44 (B)88 (C)132 (D)264 •

• •	二、填充題:
	由Na ₂ CO ₃₊ 2HCl → 2NaCl+CO ₂ +H ₂ O 反應中,可知當鹽酸1莫耳時,可與碳酸鈉 莫耳完全作用,生成氯化鈉莫耳,二氧化碳莫耳。
2.	$AI+HCI \rightarrow AICI_3+H_2(未均衡)反應中,依此反應1莫耳 AI 與足量鹽酸完全反應生成 H_2$
3.	用10克的氫和足夠的氯反應,則理論上能生成氯化氫
4.	錐形瓶內盛100公克蒸餾水,今將2.3公克鈉置入其中,其反應為:鈉+水 → 氫氧化鈉+氫,則最多可得氫氧化鈉
5.	小紅作加熱灰石(碳酸鈣)產生生石灰(氧化鈣)和二氧化碳的賈驗,化學反應式:CaCO _{3→} CaO+CO ₂ ;請計算加熱500公克的灰石可生成:(Ca=40) (1) 二氧化碳
6.	已知 aP+bQ \rightarrow cR,若P=20克/莫耳,Q=30克/莫耳,R=40克/莫耳,則生成100克的R,所需P的重量為克。
7.	燃燒1莫耳某碳氫化合物需6莫耳氧氣,產生4莫耳CO ₂ ,則該碳氫化合物分子式為,可產生水公克。
8.	某不純灰石(CaCO ₃)40 克與足量稀硫酸作用,於0C、1大氣壓下產生CO ₂ 11克,則灰石中含碳酸鈣百分率為%。 (Ca=40)
9.	將碳酸鈣加熱分解可生成氧化鈣及二氧化碳,今取50克的灰石經加熱後發現重量減輕5.5克,則灰石分解的百分率為。
10	.濃度3.4%的雙氧水200克中,加入11克二氧化錳,完全反應後生成氧克。(Mn=55)
11	.10.0克之鋅片浸入醋酸銀溶液中,今其緩緩反應後,取出鋅片餘重克時,表示鋅有1.2×10 ²² 個原子參加反應。(Zn=65)
	乙烷(C ₂ H ₆)燃燒時,消耗氧產生二氧化碳和水;請回答下列問題: (1) 乙烷的燃燒方程式為。 (2) 60 克乙烷燃燒時,產生水克。
13	3.某碳氫氧化合物0.2莫耳重36公克,若1莫耳的此化合物含氫12公克,且完全燃燒後生成CO ₂ 264公克,請回答下列問題: (1) 此化合物的分子量為。 (2) 此化合物的分子式為。 (3) 此反應需氧公克。
14	0.5M碘化鉀溶液6毫升與0.5M硝酸鉛溶液4毫升作用,則: (1) 生成沈澱公克。(Pb=207,I=127)(答案算到小數點以下二位) (2) 設沈澱固體之體積甚小而可忽略,則剩餘未用完的溶液莫耳濃度為M。

15. 農度3.4%的雙氧水200克中,加入11克—氧化錳,完全反應後生成氧克。(Mn=55)
16.實驗室中二氧化碳由灰石(CaCO ₃)和鹽酸反應製備,要獲得6.6g二氧化碳,需6M鹽酸 毫升。
 17.500毫升、0.5M的鹽酸與足量的碳酸鈉起作用,其反應如下: aNa₂CO₃+bHCl → cNaCl+dCO₂+H₂O(未平衡),請回答下列問題: (1) 平衡完成時,a+b+c+d=。 (2) 生成二氧化碳g。(Na=23,Cl=35.5)
 18.以硝酸鈉與濃硫酸共熱製造硝酸,其反應式為 2NaNO₃₊H₂SO_{4→}2HNO₃+Na₂SO₄,則: (1) 1M的H₂SO₄溶液100毫升與足量的NaNO₃作用,可產生HNO₃
19.碘化鉀溶液和硝酸鉛溶液作用,欲使200毫升的2M碘化鉀溶液完全反應,則:(1) 至少需硝酸鉛莫耳。(2) 可製得碘化鉛公克。(K=39, I=127, Pb=207, N=14)
20. 貝殼主要成分是CaCO ₃ ,它和鹽酸相遇,產生二氧化碳、水及氯化鈣。今取50克CaCO ₃ 與500毫升、0.4M的HCI反應,請回答下列問題: (1) 可生成CO ₂ 克。 (2) 剩餘CaCO ₃ 公克。(Ca=40)
21.有500公克17%的雙氧水完全分解,試回答下列問題: (1) 請寫出雙氧水在二氧化錳作用下分解的反應方程式:。 (2) 可得氧氣公克。 (3) 反應後,共剩下水公克。
22.哈柏法製造氨氣的反應方程式: N ₂ +3H ₂ →2NH ₃ 。請回答下列問題: (1) 7.2克的氫氣與42克的氦氣混和,可產生氨氣克;剩餘克。 (2) 承上題,剩餘氣體X莫耳,產生的氣體Y莫耳,則X:Y=。 (3) 欲使氣體完全反應,需再加入氣體公克。 23.將純度60%的灰石300克加熱,請回答下列問題:
(1) 若完全分解,灰石質量將減少克。 (2) 將灰石分解20%所得到的氣體X莫耳,與分解50%所得到的氣體Y莫耳,則X:Y=。
(3) 將灰石分解50%時,產生的氧化鈣佔總質量的%。 24.已知常溫常壓下的氣體每一莫耳有24.5公升,今欲產生0.4莫耳的氧化鎂,請回答下列問題: (1) 需要空氣公升。 (2) 空氣的平均分子量為克/莫耳。 (3) 需要克的鎂帶參與反應。(原子量:Mg=24) (4) 需要氧原子數目個。